
Theoret. ehim. Aeta (Bed.) 2, 4t6--421 (1964) 

Department of Chemistry, University of Alberta, Edmonton, Alta., Canada 

Non-Relativistic Self-Consistent-Field Theory. IV.* 

By 

R. E. D. McCI,UNG** and  S. F ~ i G l  

The general, exact self-consistent-field formalism developed in I I I  of this series has been 
applied to the determination of the Hartree-Foek wave function for the ground state of Li. 
Practical details of the calculations are given. 

Der Mlgemeine, exakte ,,self-consistent-field"-Formalismus, der in I I I  dieser Serie ent- 
wickelt wurde, ist fiir die Bestimmung der tIartree-Foek-Funktion ffir den Grundzustand yon 
Li verwendet worden. Praktische Einzelheiten dieser Bereehnungen sind angeffihrt. 

Le formalisme exact de champ (<au~o-eoh6rent>>, qui a 5t6 d6velopp6 duns I I I  de cette 
s6rie, est employ6 pour dgterminer la fonction de Hartree-Fock pour l'~tat fondamental de Li. 
On pr6sente aussi les d6tails pratiques des calculs. 

Introduction 
The new SCF procedure,  developed in a preceding paper  [2] of this  series, 

hereaf te r  des ignated  as I I I ,  can be ve ry  easi ly app l ied  to  ac tua l  calculat ions,  as 
only  kinet ic  energy and  nuclear  a t t r a c t i on  integrals  are eva lua ted .  

The purpose  of  this  pape r  is, besides present ing  the  resul ts  ob t a ined  for the  
ground  s ta te  of L i th ium,  to  discuss some of the  character is t ics  of th is  new t y p e  of  
calculat ion.  

Theory 

The  new scheme is based  on the  equat ions*** 

E -  4g--1 H ,  (1) 
2g 

N -  sg-- i  H ,  (2) 
2g 

where:  E is the  t o t a l  electronic energy;  H is one ha l f  of the  k inet ic  energy and 
nuclear  a t t r ac t i on  con t r ibu t ion  to t h a t  energy;  N is the  t o t a l  nuclear  a t t r a c t i on  
energy (including the  nuclear  repuls ion i f  i t  exists  for the  sys tem under  considera- 
t ion) ; and  g is an appropr i a t e  pa ramete r .  E q u a t i o n  (2) represents  a possible  formu-  
la t ion of the  vir ia l  theorem.  

This scheme can be used  in bo th  a priori  and  a pos ter ior i  calculat ions.  Self- 
consis tency is obtMned when bo th  equat ions  are satisfied b y  the  same value  of  g. 

I n  a general ,  a pr ior i  calculat ion wi th in  this  scheme there  are two 4 is t inc t  
( though closely in te r re la ted  in pract ice)  processes : first, the  de te rmina t ion  of  t he  
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value of g for which self-consistency is obtained; second, the actual determination 
of the wave function for tha t  value of g. 

The search for the correct g can be carried out in a straightforward and syste- 
matic manner, without any practical difficulty being foreseen at this moment,  
other than the amount  of computer t ime involved, which in any case will be much 
smaller that  tha t  needed for the evaluation of integrals used in the classical SCF 
formulations. Though this investigation will be taken up in the future, it has been 
considered at this moment  more convenient to emphasize the procedure which 
leads to the actual determination of wave functions. 

For this reason the calculations reported in this paper have been carried out 
for a fixed value of g, assuming that  the Hartree-Fock energy for the system under 
consideration is known. In  order to clarify the following discussion a notation 
similar to tha t  given in I I I  will be adopted: 

EHF -- Hartree-Fock energy for the system under consideration; 
H - one half of the expectation value of the one-electron terms (kinetic 

energy and nuclear attraction) of the Hamiltonian, calculated for a certain wave 
function (HHF and Hn correspond to the tIartree-Fock function and to that  func- 
tion constructed using the n-th set of trial vectors, respectively) ; 

N - expectation value of the nuclear attraction terms of the Hamiltonian, 
calculated with a certain wave function (NHF and Nn correspond to the tIartree- 
Fock function and to tha t  function constructed using the n-th set of trial vectors, 
respectively), plus the nuclear repulsion (if existing); 

gHF - -  value of g which satisfies Eqs. (i) and (2) for the quantities EHF, HHF, 

and NHF; 
gn -- value of g evaluated from Eq. (2), using Hn and Nn. 
The procedure can now be summarized in the following way. The values 

EHF and gHF are known, and the value of HHF is determined using Eq. (i). A set n 
of trial vectors is chosen and properly varied (see below) until the evaluated Hn 
approximates HHF within a fixed accuracy. Nn and gn are then evaluated, and 
gn compared with gHF. I f  they agree to a fixed accuracy, the calculation is terminat- 
ed and the wave function constructed using tha t  set of trial vectors constitutes 
an approximation to the Hartree-Foek function within the accuracy chosen. 

I f  such agreement is not obtMned, the calculations are repeated for different 
sets of trial vectors, until the condition 

gi < gH.F ~. gj 

is obtained. Then the whole procedure is started all over again for trial vectors 
intermediate between the sets i and ], carrying on the process until the desired 
self-consistency is obtained. 

The trial vectors, not necessarily orthonormM, are identified by the value 
given to the first coefficients in the expansions that  will approximate the lowest 
orbitals of each symmetry ;  the other coefficients in the trial vectors are given 
arbi trary values. 

Details oI the Calculations 
A program has been prepared for an IBM 1620 computer, which can be used 

for the determination of Hartree-]~ock wave functions for atoms in both a priori 
and a posteriori calculations, in the way described in I I I .  
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Slater-type functions have been used for the expansion of the orbitals, with 
orbital exponents arbitrarily chosen. The results can be improved, ff so desired, 
by proper optimization Of the orbital exponents, but the aim of the present calcu- 
lations is not so much an extremely good accuracy as the investigation of the 
feasibility of the new scheme, and for this reason the calculations have not been 
carried out beyond an accuracy which has been considered reasonable. 

The program needs as input data not only the orbital exponents of the basis 
functions but  also the trial values for the expansion coefficients, number and 
symmetry  designation of the occupied orbitals and their occupancies, the energy 
value (as known or estimated) and the g value (for a posteriori calculations), and 
the precision desired for H and g. 

The program carries out the calculations in a straightforward manner, but  it 
is worthwhile to mention the way in which the vectors are varied. This variation 
is given, in order to simplify the calculations, only to the first coefficients of those 
expansions tha t  will approximate the lowest orbitals of each symmetry.  I t  is 
expected tha t  the effect of this variation will be properly t ransmit ted over to the 
other coefficients during the orthonormalization process. 

In  connection with a priori calculations one special characteristic must  be 
reported here. I t  was indicated in I I I  that  g must be greater than i/4, but  this is 
not a sufficient condition when operating within the framework of the expansion 
method. There is a certain value of H which is the lowest possible value tha t  can 
be obtained using a given basis set. That  value can be best found by  a typical 
diagonalization of the corresponding matrix. 

The practical influence of this fact can be best described as follows*. The first 
iteration is carried out for an arbitrarily chosen value go (usually go = i). The new 

! 

value go, found at the end of this iteration, is now used as the gl of the following 
iteration, and so on, until self-consistency has been reached. I t  can happen, especial- 
ly at the beginning, that  the new value of g produces, when used in Eq. (i), such a 
value of H that  cannot be reached with the basis set being used. For tha t  reason the 
program must  determine at the beginning which is the lowest possible value of g 
which can be used in conjunction with the basis set chosen. This value is calculated 
by means of Eq. (1) using the energy given as input data and the lowest value 
(maximum absolute value) of H, as determined above. Without this restriction 
the program can be misled into an infinite loop around a wrong value. 

The output consists of the expansion coefficients of the occupied orbitals and 
the corresponding absolute and relative (to the highest absolute value) radial 
functions. The final value of g is also given. 

R e s u l t s  

The calculations have been carried out for the ground state of Lithium, using 
as input data the t tar tree-Fock values [1] 
EHF = - -  7.432730 a. u., HHF = -- 4.856815 a. u., gHF = t.064670, 
carrying on the iterations until the evaluated H approximates HnF within an 
accuracy of 0.0001. 

The orbital exponents have been chosen in such a way as to cover a certain 
region around the corresponding Slater exponents. Tab. I presents those orbital 

* The notation used here is that introduced in IIL 
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Table 1. Orbital exponent8 and coe//icient8 o/the 18 and 2s orbital8 

Coefficients 
n* Exponents 

ls 2s 

3.00 
2.70 
2.40 
2.t0 
t.80 
0.80 
0.65 
0.50 
0.35 
0.20 

0.020793 
0.935707 
0.048864 

-0.004470 
-0.000935 

0.000956 
0.000994 
0.000873 

-0.004678 
-0.000987 

0.004442 
-0.162529 
-0.004396 

0.006373 
0.001273 

-0.116479 
t.065450 
0.056775 
0.005870 

-0.001017 

* Principal quantum number of the Slater-type basis functions. 

Table 2. Radial/unction o] the Is orbital 

Absolute Relative 
r 

This paper ~artree-Fock* This paper Hartree-Fock* 

0.00 
0.05 
0.10 
0.t5 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0,70 
0.75 
0,80 
0.85 
0.90 
0.95 
9.00 
9.10 
9.20 
1.30 
9.40 
1.50 
1.60 
1.70 
1.80 
1.90 
2.00 
2.50 
3.00 
3.50 

2.49663 
2.18166 
1.90645 
1.66598 
t.45585 
t.27224 
t.11180 
0.97161 
0.84910 
0.74205 
0.64851 
0.56676 
0.49532 
0.43290 
0.37834 
0.33067 
0.28901 
0.25260 
0.22078 
0.19297 
0.16866 
0.92886 
0.09846 
0.07523 
0.05749 
0.04393 
0.03358 
0.02566 
0.01962 
0.01500 
0.01147 
0.00299 
0.00077 
0.00098 

2.61450 10000 
2.25092 8737 
1.94212 7635 
t.67912 6672 
t.45452 5830 
1.26222 5095 
1.09716 4452 
0.95515 3891 
0.83271 3400 
0.72692 2971 
0.63534 2597 
0.55591 2269 
0.48691 1983 
0.42687 t733 
0.37455 t515 
0.32890 1324 
0.28902 1t57 
0.25415 t011 

884 
772 
675 
5t6 
394 
301 
230 
175 
134 
106 

78 
60 
45 
12 

3 
0 

0.22361 
0.19685 
0.17338 
0.13469 
0.10479 
0.08164 
0.06367 
0.04971 
0.03885 
0.03038 
0.02378 
0.01863 
0.01460 
0.00437 
0.00134 
0.00042 

* Using the Hartree-Fock function (unpublished) 
Research Laboratory, San Jose, California, U. S. A.). 
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determined by 

10000 
8608 
7427 
6421 
5562 
4827 
4196 
3652 
3184 
2780 
2429 
2126 
1862 
1632 
1432 
1257 
t105 

971 
855 
752 
663 
515 
400 
312 
243 
190 
148 
116 

90 
71 
55 
16 

5 
1 
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Table 3. Radial ]unction o/the 2a orbital 

Absolute Relat ive  
r 

This paper t ta r t ree-Fock* This paper Hartree-Foek* 

0.00 
0.05 
0. t0 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50. 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 
t .00 
1.10 
1.20 
1.30 
1.40 
1.50 
1.60 
t .70 
1.80 
t .90 
2.00 
2.50 
3.00 
3.50 
4.00 
4.50 
5.00 
6.00 
7.00 
8.00 
9.00 

I0.00 
1t.00 
t2.00 
13.00 
t4.00 
15.00 

-0.39033 
-0.33613 
-0.28844 
-0.24648 
-0.20955 
-0.17703 
-0.14839 
-0.12316 
-0.10092 
-0.08132 
-0.06404 
-0.04880 
-0.03537 
-0.02352 
-0.01307 

-0.40925 
-0.35145 
-0.30161 
-0.25846 
-0.22095 
-0.18823 
-0.15959 
-0.13444 
-0.11230 
-0.09274 
-0.07542 
-0.06005 
-0.04639 

0.03423 
-0.02338 

-10000 
-8610  
-7388  
-6314  
-5368  
-4534  
-3801 
-3154  
-2585 
-2083  
-1640  
-1250  
- 906 
- 602 
- 334 

-0.00385 
0.00426 
0.01141 
0.01771 
0.02325 
0.02812 
0.03615 
0.04229 
0.04693 
0.05039 
0.05289 
0.05463 
0.05576 
0.05639 
0.05662 
0.05653 
0.05290 
0.04677 
0.04000 
0.03347 
0.02754 
0.02238 
0.01435 
0.00894 
0.00546 
0.00328 
0.00195 
0.00115 
0.00067 
0.00039 
0.00023 
0.00013 

-0.01369 
-0.00503 

0.00271 
0.00963 
0.01583 
0.02137 
0.03075 
0.03821 
0.04409 
0.04868 
0.05219 
0.05480 
0.05667 
0.05791 
0.05862 
0.05890 
0.05587 
0.04911 
0.04139 
0.03396 
0.02735 
0.02174 
0.01336 
0.00799 
0.00469 
0.00272 
0.00156 
0.00088 
0.00050 
0.00028 
0,00015 
0.00008 

98 
109 
292 
453 
595 
720 
926 

1083 
t202 
1290 
t355 
1399 
t428 
t444 
t450 
1448 
1355 
1198 
t024 

857 
7O5 
573 
367 
229 
t40  

84 
5O 
29 
17 
t0  

5 
3 

-10000 
-8587  
-7369  
-6314  
-5398  
-4599  
-3899  
-3284  
-2743  
-2265  
-1842  
- t 4 6 7  
- 1 t 3 3  
- 836 
- 571 
- 334 
- 122 

66 
235 
386 
522 
751 
933 

t077 
1t89 
t275 
1339 
t384 
1414 
1432 
1439 
1365 
1200 
t011 

829 
668 
531 
326 
195 
114 

66 
38 
21 
t2  

6 
3 
2 

* Using the  Har~ree-Fock function (unpublished) determined by  Dr. E. CLEYfEI~-TI (IBM 
Research Laboratory,  San Jose, California, U. S. A.). 

e x p o n e n t s  a n d  t h e  c o r r e s p o n d i n g  e x p a n s i o n  coeff ic ients .  T a b .  2 a n d  3 p r e s e n t  

t h e  a b s o l u t e  a n d  r e l a t i v e  r a d i a l  f u n c t i o n s  o f  t h e  I s  a n d  2s o r b i t a l s ;  for  c o m p a r i s o n  
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purposes the radial functions obtained using the Hartree-Fock functions deter- 
mined by CLEME~TI [1] in classical SCF calculations are also presented*. 

Inspection of the results obviates all need of discussion. As it was pointed out 
before, these results could still be improved by an adequate optimization of the 
orbital exponents. 

The final value of g is 1.0715, which shows what a close approximation the 
present wave function is to the tIartree-Foek function. In this connection it must 
be pointed out that  the present scheme does not involve more trial and error 
efforts than the classical procedures. While in the latter the energy is used as 
criterion of self-consistency, the parameter g plays the same role in this method. 
I t  is true that  normal SCF treatments offer the advantage of the diagonalization 
procedure, but an over all comparison of both methods will still show that  the 
present treatment is simpler, mainly due to the fact that  no complicated integrals 
are evaluated. 

Conclusions 
First of all it must be emphasized that the scheme used in the present calcu- 

lations, as developed in I I I ,  is an exact method, which offers the possibility of 
attaining any desired precision in a systematic manner. 

The interest of this scheme lies in the fact that  it can be carried out as easily 
for molecules as for atoms. Because there is no need of evaluating interelectronic 
repulsion integrals, the actual time involved in the calculations can be considered 
to be negligible when compared with the time needed for the schemes used at 
present. At the same time, the storage needs are so extraordinarily reduced that  
it is possible to undertake the calculation of SCF functions for molecules of any 
size even with small computers. 
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