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The general, exact self-consistent-field formalism developed in III of this series has been
applied to the determination of the Hartree-Fock wave function for the ground state of Li.
Practical details of the calculations are given.

Der allgemeine, exakte ,,self-consistent-field ‘-Formalismus, der in III dieser Serie ent-
wickelt wurde, ist fiir die Bestimmung der Hartree-Fock-Funktion fiir den Grundzustand von
Li verwendet worden. Praktische Einzelheiten dieser Berechnungen sind angefiihrt.

Le formalisme exact de champ «auto-cohérent», qui a été développé dans III de cette
série, est employé pour déterminer la fonction de Hartree-Fock pour I'état fondamental de Li.
On présente aussi les détails pratiques des calculs.

Introduction
The new SCF procedure, developed in a preceding paper [2] of this series,
hereafter designated as III, can be very easily applied to actual calculations, as
only kinetic energy and nuclear attraction integrals are evaluated.
The purpose of this paper is, besides presenting the results obtained for the
ground state of Lithium, to discuss some of the characteristics of this new type of
caleulation.

Theory
The new scheme is based on the equationg***
E-*"'mg, (1)
29
N=S39"1 g , (2)
29

where: E is the total electronic energy; H is one half of the kinetic energy and
nuclear attraction contribution to that energy; N is the total nuclear attraction
energy (including the nuclear repulsion if it exists for the system under considera-
tion); and ¢ is an appropriate parameter. Equation (2) represents a possible formu-
lation of the virial theorem.

This scheme can be used in both a priori and a posteriori calculations. Self-
consistency is obtained when both equations are satisfied by the same value of g.

In a general, a priori calculation within this scheme there are two distinct
(though closely interrelated in practice) processes: first, the determination of the
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value of g for which self-consistency is obtained ; second, the actual determination
of the wave function for that value of g.

The search for the correct g can be carried out in a straightforward and syste-
matic manner, without any practical difficulty being foreseen at this moment,
other than the amount of computer time involved, which in any case will be much
smaller that that needed for the evaluation of integrals used in the classical SCF
formulations. Though this investigation will be taken up in the future, it has been
considered at this moment more convenient to emphasize the procedure which
leads to the actual determination of wave functions.

For this reason the calculations reported in this paper have been carried out
for a fixed value of g, assuming that the Hartree-Fock energy for the system under
consideration is known. In order to clarify the following discussion a notation
similar to that given in ITI will be adopted:

Epp — Hartree-Fock energy for the system under consideration;

H — one half of the expectation value of the one-electron terms (kinetic
energy and nuclear attraction) of the Hamiltonian, calculated for a certain wave
function (Hgp and H correspond to the Hartree-Fock function and to that fune-
tion constructed using the n-th set of trial vectors, respectively);

N — expectation value of the nuclear attraction terms of the Hamiltonian,
calculated with a certain wave function (Ngr and N, correspond to the Hartree-
Fock function and to that function constructed using the n-th set of trial vectors,
respectively), plus the nuclear repulsion (if existing);

grr — value of g which satisfies Eqgs. (1) and (2) for the quantities Egp, Hyr,
and Ngr;

gn — value of g evaluated from Eq. (2), using H, and N,.

The procedure can now be summarized in the following way. The values
Egnp and ggr are known, and the value of Hyp is determined using Eq. (1). A set »
of trial vectors is chosen and properly varied (see below) until the evaluated H,
approximates Hpy within a fixed accuracy. N, and ¢, are then evaluated, and
gn compared with ggz. If they agree to a fixed accuracy, the calculation is terminat-
ed and the wave function constructed using that set of trial vectors constitutes
an approximation to the Hartree-Fock funection within the accuracy chosen.

If such agreement is not obtained, the calculations are repeated for different
sets of trial vectors, until the condition

g < gur < ¢

is obtained. Then the whole procedure is started all over again for trial vectors
intermediate between the sets ¢ and j, carrying on the process until the desired
self-consistency is obtained.

The trial vectors, not necessarily orthonormal, are identified by the value
given to the first coefficients in the expansions that will approximate the lowest
orbitals of each symmetry; the other coefficients in the trial vectors are given
arbitrary values.

Details of the Caleulations

A program has been prepared for an TBM 1620 computer, which can be used
for the determination of Hartree-Fock wave functions for atoms in both a priori
and a posteriori calculations, in the way deseribed in III.
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Slater-type functions have been used for the expansion of the orbitals, with
orbital exponents arbitrarily chosen. The results can be improved, if so desired,
by proper optimization of the orbital exponents, but the aim of the present calcu-
lations is not so much an extremely good accuracy as the investigation of the
feasibility of the new scheme, and for this reason the calculations have not been
carried out beyond an accuracy which has been considered reasonable.

The program needs as input data not only the orbital exponents of the basis
functions but also the trial values for the expansion coefficients, number and
symmetry designation of the occupied orbitals and their occupancies, the energy
value (as known or estimated) and the g value (for a posteriori caleulations), and
the precision desired for H and g.

The program carries out the calculations in a straightforward manner, but it
is worthwhile to mention the way in which the vectors are varied. This variation
is given, in order to simplify the calculations, only to the first coefficients of those
expansions that will approximate the lowest orbitals of each symmetry. It is
expected that the effect of this variation will be properly transmitted over to the
other coefficients during the orthonormalization process.

In connection with a priori calculations one special characteristic must be
reported here. It was indicated in IIT that g must be greater than 1/4, but this is
not a sufficient condition when operating within the framework of the expansion
method. There is a certain value of H which is the lowest possible value that can
be obtained using a given basis set. That value can be best found by a typical
diagonalization of the corresponding matrix.

The practical influence of this fact can be best described as follows*. The first
iteration is carried out for an arbitrarily chosen value g, (usually g, = 1). The new
value gq, found at the end of this iteration, is now used as the g, of the following
iteration, and so on, until self-consistency has been reached. It can happen, especial-
ly at the beginning, that the new value of g produces, when used in Eq. (1), such a
value of H that cannot be reached with the basis set being used. For that reason the
program must determine at the beginning which is the lowest possible value of ¢
which can be used in conjunction with the basis set chosen. This value is calculated
by means of Eq. (1) using the energy given as input data and the lowest value
(maximum absolute value) of H, as determined above. Without this restriction
the program can be misled into an infinite loop around a wrong value.

The output consists of the expansion coefficients of the occupied orbitals and
the corresponding absolute and relative (to the highest absolute value) radial
functions. The final value of g is also given.

Results
The calculations have been carried out for the ground state of Lithium, using
as input data the Hartree-Fock values [1]
Egp = — 7.432730 a. u., Har = — 4.856815 a. u., gugr = 1.064670,
carrying on the iterations until the evaluated H approximates Hyr within an

accuracy of 0.0001.
The orbital exponents have been chosen in such a way as to cover a certain
region around the corresponding Slater exponents. Tab. 1 presents those orbital

* The notation used here is that introduced in ITIL.
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Table 1. Orbital exponenis and coefficients of the 1s and 2s orbitals

Coefficients
nk Exponents
1s 28

1 3.00 0.020793 0.004442
1 2.70 0.935707 —-0.162529
1 2.40 0.048864 —~0.004396
1 2.10 -0.004470 0.006373
1 1.80 —0.000935 0.001273
2 0.80 | 0.000956 —0.116479
2 0.65 ‘ 0.000914 1.065450
2 0.50 0.000873 0.056775
2 0.35 —0.004678 0.005870
2 0.20 ~0.000987 —0.001017

* Principal quantum number of the Slater-type basis functions,

Table 2. Radial function of the 1s orbital

Absolute Relative
’ This paper Hartree-Fock This paper Hartree-Fock*
0.00 2.49663 2.61450 10000 10000
0.05 2.18166 2.25002 8737 8608
0.10 1.90645 1.94212 7635 7427
045 1.66598 1.67912 6672 6421
0.20 1.45585 1.45452 5830 5562
0.25 1.27224 1.26222 5095 4827
0.30 1.11180 1.09716 | 4452 4196
0.35 0.97161 0.95515 3891 3652
0.40 0.84910 0.83271 3400 3184
0.45 0.74205 0.72692 2971 2780
0.50 0.64851 0.63534 2597 2429
0.55 0.56676 0.55591 2269 2126
0.60 0.49532 0.48691 1983 1862
0.65 0.43290 0.42687 1733 1632
0.70 0.37834 0.37455 1515 1432
0.75 0.33067 0.32890 1324 1257
0.80 0.28901 0.28902 1157 1105
0.85 0.25260 0.25415 1011 971
0.90 0.22078 0.22361 884 855
0.95 0.19297 0.19685 772 752
1.00 0.16866 0.17338 675 663
1.10 0.12886 0.13469 516 515
1.20 0.09846 0.10479 394 400
1.30 0.07523 0.08164 301 312
1.40 0.05749 0.06367 230 243
1.50 0.04393 0.04971 175 190
1.60 0.03358 0.03885 134 148
1.70 0.02566 0.03038 106 116
1.80 0.01962 0.02378 | 78 90
1.90 0.01500 0.01863 | 60 7
2.00 0.01147 | 0.01460 45 ! 55
2.50 0.00299 0.00437 | 12 16
3.00 0.00077 | 0.00134 3 5
3.50 0.00018 | 0.00042 0 1

* Using the Hartree-Fock function (unpublished) determined by Dr. E. CLEmENTI (IBM
Research Laboratory, San Jose, California, U. 8. A.).

Theoret. chim. Acta (Berl.), Vol, 2 28



420

R. E. D. McCruwa and S. FraGa:

Table 8. Radial function of the 2s orbital

Absolute

Relative

This paper Hartree-Fock* This paper Hartree-Fock*
0.00 -0.39033 —0.40925 -10000 —10000
0.05 -0.33613 ~0.35145 -8610 —8587
0.10 —0.28844 -0.30161 —7388 —7369
0.15 —0.24648 —0.25846 —6314 —-6314
0.20 —0.20955 -0.22095 —-5368 -5398
0.25 -0.17703 -0.18823 —4534 —4599
0.30 —(.14839 —0.15959 —3801 —3899
0.35 -0.12316 —0.13444 -~ 3154 —3284
0.40 —0.10092 -0.11230 —2585 —2743
0.45 —0.08132 —-0.09274 —2083 —2265
0.50. —0.06404 ~0.07542 ~1640 —1842
0.55 —0.04880 —0.06005 -1250 —1467
0.60 -0.03537 —0.04639 — 906 ~1133
0.65 -0.02352 —0.03423 - 602 — 836
0.70 —-0.01307 —0.02338 - 334 - 571
0.75 -0.00385 -0.01369 - 98 — 334
0.80 0.00426 -0.00503 109 - 122
0.85 0.01141 0.00271 292 66
0.90 0.01771 0.00963 453 235
0.95 0.02325 0.01583 595 386
1.00 0.02812 0.02137 720 522
1.10 0.03615 0.03075 926 751
1.20 0.04229 0.03821 1083 933
1.30 0.04693 0.04409 1202 1077
1.40 0.05039 0.04868 1290 1189
1.50 0.05289 0.05219 1355 1275
1.60 0.05463 0.05480 1399 1339
1.70 0.05576 0.05667 1428 1384
1.80 0.05639 0.05791 1444 1414
1.90 0.05662 0.05862 1450 1432
2.00 0.05653 0.05890 1448 1439
2.50 0.05290 0.05587 1355 1365
3.00 0.04677 0.04911 1198 1200
3.50 0.04000 0.04139 1024 1011
4.00 0.03347 0.03396 857 829
4.50 0.02754 0.02735 705 668
5.00 0.02238 0.02174 573 531
6.00 0.01435 0.01336 367 326
7.00 0.00894 0.00799 229 195
8.00 0.00546 0.00469 140 114
9.00 0.00328 0.00272 84 66
10.00 0.00195 0.00156 50 38
11.00 0.00115 0.00088 29 21
12.00 0.00067 0.00050 17 12
13.00 0.00039 0.00028 10 6
14.00 0.00023 0.00015 5 3
15.00 0.00013 0.00008 3 2

* Using the Hartree-Fock function (unpublished) determined by Dr. E. CLemENTI (IBM
Research Laboratory, San Jose, California, U. S. A.).

exponents and the corresponding expansion coefficients. Tab. 2 and 3 present
the absolute and relative radial functions of the 1s and 2s orbitals; for comparison
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purposes the radial functions obtained using the Hartree-Fock functions deter-
mined by CLEMENTI [1] in classical SCF calculations are also presented*.

Inspection of the results obviates all need of discussion. As it was pointed out
before, these results could still be improved by an adequate optimization of the
orbital exponents.

The final value of ¢ is 1.0715, which shows what a close approximation the
present wave function is to the Hartree-Fock function. In this connection it must
be pointed out that the present scheme does not involve more trial and error
efforts than the classical procedures. While in the latter the energy is used as
criterion of self-consistency, the parameter ¢ plays the same role in this method.
It is true that normal SCF treatments offer the advantage of the diagonalization
procedure, but an over all comparison of both methods will still show that the
present treatment is simpler, mainly due to the fact that no complicated integrals
are evaluated.

Coneclusions

First of all it must be emphasized that the scheme used in the present caleu-
lations, as developed in III, is an exact method, which offers the possibility of
attaining any desired precision in a systematic manner.

The interest of this scheme lies in the fact that it can be carried out as easily
for molecules as for atoms. Because there is no need of evaluating interelectronic
repulsion integrals, the actual time involved in the calculations can be considered
to be negligible when compared with the time needed for the schemes used at
present. At the same time, the storage needs are so extraordinarily reduced that
it is possible to undertake the calculation of SCF functions for molecules of any
size even with small computers.
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